I B.Tech - II Semester – Regular / Supplementary Examinations MAY 2025

ENGINEERING GRAPHICS (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

		BI	CO	Max.				
		DL		Marks				
	UNIT-I							
1	The area of a field is 50,000 sq m. The length	L3	CO1	14 M				
	and the breadth of the field, on the map is 10 cm	L						
	and 8 cm respectively. Construct a diagona							
	scale which can read up to one metre. Mark the	;						
	length of 235 metre on the scale. What is the	;						
	R.F. of the scale?							
OR								
2	A circle of 60 mm diameter rolls along a straigh	: L3	CO1	14 M				
	line without slipping. Draw the curve traced ou							
	by a point P on the circumference, for one	;						
	complete revolution of the circle. Name the	;						
	curve. Draw a tangent to the curve at a point or	L						
	it 45 mm from the line.							
			1	1				

PVP 23

Max. Marks: 70

UNIT-II								
3	a)	Two points A and B are in the H.P. The	L3	CO2	7 M			
		point A is 40 mm in front of the V.P., while						
		B is behind the V.P. The distance between						
		their projectors is 70 mm and the line						
		joining their top views makes an angle of						
		45° with xy. Find the distance of the point B						
		from the V.P.						
	b)	A point 40 mm above xy line is the plan-	L3	CO2	7 M			
		view of two points P and Q. The elevation						
		of P is 50 mm above the H.P. while that of						
		the point Q is 25 mm below the H.P. Draw						
		the projections of the points and state their						
		position with reference to the principal						
		planes and the quadrant in which they lie.						
		OR						
4	A 1	ine AB, 80 mm long is inclined at 30° to the	L3	CO2	14 M			
	H.F	P. Its end A is 15 mm above the H.P. and 25						
	mn	n in front of the V.P. Its front view measures						
	65	mm. Draw the top view of AB and determine						
	its	inclination with the V.P.						
UNIT-III								
5	Dra	w the projections of a regular hexagon of 25	L3	CO2	14 M			
	mm	n side, having one of its sides in the H.P. and						
	inc	lined at 60° to the V.P., and its surface						
	ma	king an angle of 45° with the H.P.						

OR					
6	A hexagonal pyramid, base 30 mm side and axis	L3	CO2	14 M	
	55 mm long, has an edge of its base on the	15	002	1 1 1/1	
	ground. Its axis is inclined at 30° to the ground				
	and parallel to the V.P. Draw its projections.				
	UNIT-IV		1 1		
7	A cube of 40 mm long edges is resting on the	L3	CO2	14 M	
	H.P. on one of its faces with a vertical face				
	inclined at 30° to the V.P. It is cut by a section				
	plane parallel to the V.P. and 12 mm away from				
	the axis and further away from the V.P. Draw its				
	sectional front view and the top view				
	OR				
8	Draw the development of the lateral surface of	L3	CO3	14 M	
	the part P of the cylinder, the front view of				
	which is shown in Fig.				
	039 + 				

